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Abstract 

The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts 
lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes 
in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing 
plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exog-
enous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses 
against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model 
plants, this review provides a comprehensive overview of the current understanding of this function in horticultural 
crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic 
stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.
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Introduction
The eukaryotic genome is extensively transcribed into 
RNA. However, approximately 98% of the transcribed 
RNAs do not produce any functional proteins, and these 
RNAs are called non-coding RNAs (ncRNAs) (Wang 
et  al. 2017). Housekeeping RNAs such as ribosomal 
RNAs, transfer RNAs, small nuclear RNAs, and small 
nucleolar RNAs are ncRNAs that have been comprehen-
sively studied as they are fundamentally expressed and 
play a vital role in cell viability (Morey & Avner 2004). 
However, other ncRNAs are synthesized in response to 
external stimuli or during specific developmental stages 
(Fig. 1) (Szymański 2003).

The ncRNAs can be categorized according to their 
length. Small RNAs (sRNAs) comprising 20–24 

nucleotides include small interfering RNAs (siRNAs) 
and microRNAs (miRNAs) (Axtell 2013). Long non-
coding RNAs (lncRNAs) are typically described as 
having a length greater than 200 nucleotides. How-
ever, this value is arbitrary. A better way to describe 
lncRNAs is as RNAs that have functions distinct from 
protein-coding potential and have biogenesis mecha-
nisms other than molecular scale-based cleaving or 
trimming, which are similar to mechanisms in sRNAs 
(Wierzbicki et al. 2021). LncRNAs may be classified in 
numerous ways according to their lengths, locations of 
protein-coding genes, biogenesis pathways, subcellu-
lar locations, functions, and so forth. One of the most 
common systems of classification is based on genomic 
origins (Fig. 2) (Wang & Chekanova 2017).

Despite being classified as “non-coding”, lncRNAs 
may have regions of under 100 codons known as small 
open reading frames that can be translated into biologi-
cally useful microproteins or peptides (Fesenko et  al. 
2021). One study found that these lncRNA-encoded 
peptides helped control the growth and differentiation 
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of moss (Physcomitrella patens) (Fesenko et  al. 2019). 
LncRNAs may consequently perform both protein-cod-
ing and non-protein-coding functions (Li & Liu 2019). 
The presence of lncRNAs is not proof of their function-
ality, and early research hypothesized that lncRNAs 

were simply byproducts of RNA processing or “tran-
scriptional noise”. However, recent studies have revealed 
their roles in diverse biological processes in both plants 
and animals (Chekanova 2015). For example, dysregu-
lation of these RNAs in mammals can impair normal 

Fig. 1 Classification of ncRNAs. Housekeeping RNAs have been extensively studied because of the fundamental nature of their expression. Other 
ncRNAs can be synthesized because of external stimuli and may be classified according to length into small RNAs (20–24 nucleotides) and long 
non-coding RNAs (≥200 nucleotides)

Fig. 2 Classification of lncRNAs. Based on the genomic locations from which RNAs are transcribed relative to protein-coding regions, long 
non-coding RNAs (lncRNAs) can be classified into five distinct groups. A Exonic lncRNAs can partially or completely overlap with the exons 
of genes that code for proteins. They are transcribed in either the same direction (sense lncRNA) or the opposite direction (antisense lncRNA) 
as the mRNA. B Intronic lncRNAs originate from long introns of protein-coding genes and may be transcribed in either the same or the opposite 
direction as the mRNA. C Enhancer lncRNAs are transcribed from short enhancer regions of DNA. They may be bidirectional (as shown in the figure) 
or unidirectional, depending on their transcription direction. D Long intergenic non-coding RNAs (lincRNAs) arise from the intergenic region 
between two protein-coding genes and may be transcribed in either the same or the opposite direction of the nearest genes
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cellular function, resulting in growth abnormalities 
and various diseases such as cancer (Weng et al. 2020). 
The functions of mammalian lncRNAs in immune 
responses, homeostasis, growth hormone production, 
organ development, and synaptic function have also 
been comprehensively studied (Dhanoa et  al. 2018; 
Mattick et  al. 2023; Wang & Chang 2011). In plants, 
lncRNAs play a role in controlling epigenetics, flower-
ing time, organogenesis, and photomorphogenesis, and 
they also control gene expression to help plants deal 
with stress (Bardou et  al. 2014; Berry & Dean 2015; 
Matzke & Mosher 2014; Wang et al. 2014).

Two categories of external conditions that disrupt 
plant growth, development, and productivity are biotic 
and abiotic stresses (Gull and Ahmad Lone 2019). Liv-
ing organisms such as bacteria and fungi are the root 
causes of biotic stress, while environmental factors 
such as heat, drought, salinity, etc. cause abiotic stress 
(Rodríguez et  al. 2005). Horticultural crops, includ-
ing fruits, vegetables, and medicinal plants, are vital to 
human health and the global economy. As plants are 
immobile, they need to acclimatize to adverse condi-
tions in order to survive (Patra et  al. 2016). LncRNAs 
may play a role in plant defense mechanisms against 
abiotic stress.

As abiotic stress severely restricts crop yield and pro-
ductivity, several strategies to enhance plant stress tol-
erance have been explored. The exogenous application 
of compounds such as methyl jasmonate and salicylic 
acid (SA) is one of the most efficient of these strategies 
(Hosseinifard et  al. 2022). This review summarizes the 
research status of the effects of several abiotic stresses 
on lncRNA expression in different horticultural plant 
species. It also examines the small body of literature 
regarding the possible link between lncRNAs and exog-
enous chemical treatments in plant defense against abi-
otic stress.

Functional mechanisms of lncRNAs
A growing number of lncRNAs have been reported 
in plant transcriptomes during the last few decades, 
although only a small percentage of these have been 
functionally characterized. Gene expression is con-
trolled at the epigenetic, transcriptional, post-tran-
scriptional, translational, and post-translational levels 
in eukaryotic cells. LncRNAs play a major role in the 
regulation of gene expression on many of these levels 
(Statello et al. 2021). They can perform their regulatory 
roles in various ways by acting as scaffolds, guides, sig-
nals, or decoys (Fig. 3) (Chowdhary et al. 2021). Certain 
lncRNAs can perform more than one of these roles; 
therefore, it is difficult to categorize them into a single 
group (Wang & Chang 2011).

Scaffolds
LncRNAs interact with proteins by complementary 
sequence motifs or secondary or tertiary structures. 
They help assemble and connect small protein com-
plexes to form large functional units (Blythe et  al. 2016; 
Ma et  al. 2022). For example, the responsive lncRNAs 
TCONS_00202587 and TCONS_00260893 controlled 
their targets by acting as RNA scaffolds. This helped pro-
tect and recover photosynthetic processes, stopped mem-
brane peroxidation, and lowered DNA damage in poplar 
(Populus simonii) under heat stress (Song et al. 2020).

Guides
Guide lncRNAs attach to molecules such as transcrip-
tional co-regulators or chromatin regulatory protein 
complexes and move them to specific parts of the genome 
where target gene expression is controlled (Lv et al. 2023; 
Ma et al. 2022). In the first intronic region of FLOWER-
ING LOCUS C (FLC), COLD-ASSISTED INTRONIC 
NON-CODING RNA (COLDAIR) recruits polycomb 
repressive complex 2, which results in the H3K27me3 
alteration of histones during the early vernalization of 
plants (Heo & Sung 2011).

Signals
LncRNAs can connect to DNA-binding proteins such as 
transcription factors (TFs) and histone-modifying com-
plexes. This can change the levels of transcription, splic-
ing, and translation to control gene expression. Thus, 
they act as indicators of transcriptional activity at a par-
ticular time and space (Wang & Chang 2011).

TFs contain DNA-binding domains that bind to spe-
cific regions of genes and control the rate of transcrip-
tion, regulating the rate and timing of gene expression. 
In plants, lncRNAs may directly interact with TFs 
or indirectly interact with the multiprotein complex 
“mediator”, which in turn interacts with TFs (Yang et al. 
2023; Yin & Wang 2014). An example of the first type 
is how the lncRNA AUXIN-REGULATED PROMOTER 
LOOP (APOLO) and the TF WRKY42 work together 
in Arabidopsis thaliana under cold stress. A complex 
called WRKY42–APOLO changes the 3D conforma-
tion of the chromatin at the ROOT HAIR DEFECTIVE 6 
(RHD6) genomic region. This turns on the RHD6 region 
and causes ROOT HAIR DEFECTIVE 6-LIKE 2 (RSL2) 
and RSL4 to be expressed. The complex also binds to 
EXTENSIN 3. Both actions result in root hair cell elonga-
tion (Moison et al. 2021; Pacheco et al. 2021). In Arabi-
dopsis, ELF18-induced long non-coding RNA1 (ELENA1) 
binds to a mediator subunit called MED19a and acts 
on the promoter region of PATHOGENESIS-RELATED 
GENE 1 (PR1) to protect the plant from Pseudomonas 
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syringae. It has been proposed that ELENA1 recruits 
MED19a to PR1 by interacting with another mediator, 
MED26b (Seo et al. 2017).

LncRNAs can directly regulate transcription as well 
(Yang et  al. 2023). In response to lead  (Pb2+) toxicity, 
226 lncRNAs, including PMAT and PtoMYB46, were 
induced and differentially expressed in poplar (P. tomen-
tosa). PMAT, or PtoMYB46, regulated by PMAT, stops 
PtoMATE transcription and thus its translation, causing 
cells to produce less citric acid and take in more  Pb2+ 
(Chen et al. 2022).

Protein trafficking, a process critical to plant stress 
response, refers to the movement of proteins within cells 
from one subcellular compartment to another (Drouji-
nine et al. 2021). LncRNAs can mediate this process. For 
example, nuclear-localized RNA binding protein 1 was 
re-localized to the cytoplasm by the lncRNA ENOD40 in 
Medicago truncatula (Yang et al. 2023).

LncRNAs can also stop certain proteins from inter-
acting with each other. This stops the formation of 

certain macromolecular complexes that are needed to 
control gene expression (Yang et  al. 2023). This was 
observed in the early stages of endosperm develop-
ment in rice (Oryza sativa), where a helicase family 
protein (HeFP) controls how tubulin works. MISSEN, a 
lncRNA, competitively inhibits the interaction between 
HeFP and tubulin, leading to abnormal cytoskeletal 
polymerization and the formation of slightly larger 
seeds (Zhou et  al. 2021). During biotic stresses in 
Arabidopsis, ELENA1 interacts with and frees FIBRIL-
LARIN 2, a negative transcriptional regulator, from the 
PR1 promoter. This makes room for the positive regula-
tor MED19a to bind to it (Seo et al. 2019).

In chromatin remodeling, chromatin is rearranged to 
make it accessible to TFs or other DNA-binding proteins 
in order to regulate gene expression (Jiang et  al. 2023). 
Post-transcriptional modifications of histone proteins 
that activate or repress transcription in this fashion can 
be regulated by lncRNAs, which recruit chromatin-mod-
ifying complexes to perform the function. The activation 

Fig. 3 Mechanisms of action of lncRNAs. LncRNAs may regulate gene expression by acting as scaffolds, guides, signals, or decoys. A Scaffolds bind 
to multiple small molecular components simultaneously and act as a platform for assembling these components into large regulatory complexes 
that activate or inhibit gene expression. B Guides bind to specific regulatory proteins and direct their localization to specific target genomic loci 
where gene expression is regulated. C Signals function as molecular cues because they precisely start transcription at certain times and places, 
letting cells respond to different stimuli. They function in various ways, such as by directly binding to the target site to perform a regulatory role. 
D Decoys act by binding to RNA-binding proteins, such as transcription factors or chromatin modifiers, and sequester them away from their 
intended targets, thus inhibiting these proteins from performing their roles. Note: The regulatory proteins are shown as positively regulating gene 
expression, but they may also inhibit gene expression
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of histone modifications can also be moderated by lncR-
NAs (Yang et al. 2023).

Regulatory DNA sequences can make physical con-
tact with target genes by chromatin looping to control 
transcription over long distances (Holwerda & De Laat 
2012). By bringing in chromatin-modifying complexes, 
lncRNAs may be involved in the formation of chromatin 
loops between lncRNA and its target (Yang et al. 2023). 
For example, when Arabidopsis is exposed to exogenous 
abscisic acid (ABA), the MARneral Silencing (MARS) 
lncRNA causes the chromatin loop to form R-loops 
(Roulé et al. 2022).

R-loops are made up of an RNA–DNA duplex and an 
unpaired DNA strand. They can control gene expres-
sion at the chromosomal ends (Belotserkovskii et  al. 
2018). The involvement of plant lncRNAs in R-loop 
synthesis has been proven. The APOLO lncRNA cre-
ates an R-loop that controls the activity of genes in 
Arabidopsis that react to distal auxin as the lateral 
roots expand (Ariel et al. 2020).

Alternative splicing alters pre-mRNA structures before 
translation. During this process, exons from the same 
gene are linked in different ways to form different but 
related mRNA transcripts (Greenberg et  al. 2013). The 
mechanism of alternative splicing can be influenced by 
lncRNAs, either by binding to spliceosome components 
or nuclear speckle RNA-binding proteins (Yang et  al. 
2023). Flowering-associated intergenic lncRNA (FLAIL) 
in Arabidopsis interacts with components of the spliceo-
some to influence the expression of target mRNA. Flow-
ering is repressed by FLAIL by regulating alternative 
splicing (Jin et al. 2023).

LncRNAs can also regulate gene expression by inhib-
iting or enhancing the association between mRNA 
transcripts and polysomes (Yang et  al. 2023). There is 
a nitrogen-fixing symbiotic relationship between M. 
truncatula and Sinorhizobium meliloti. The association 
between an alternative variant of the lncRNA trans-act-
ing small interference RNA3 (ALT TAS3) and polysomes 
is enhanced in response to rhizobia, increasing nodule 
development and therefore increasing the chances of 
productive symbiosis (Traubenik et al. 2020).

Decoys
Transcriptional regulators are prevented from bind-
ing to their binding sites by decoy lncRNAs to regulate 
gene expression. miRNAs are used by the RNA-induced 
silencing complex in gene silencing. In plants, certain 
lncRNAs with miRNA recognition regions that are simi-
lar to miRNA targets can act like miRNA targets to stop 
miRNA activity by binding to miRNAs and stopping 
them from interacting with the actual targets (Dupon 

et  al. 2009). These lncRNAs are known as competing 
endogenous RNAs (ceRNAs) or lncRNA sponges, and 
they play a significant role in reducing gene expression 
(Wang & Chekanova 2017; Yang et  al. 2023). In wheat 
(Triticum aestivum), 849 lncRNAs changed their expres-
sion when the plant was exposed to alkaline stress and 
were decoys for 115 conserved miRNAs (Wei et al. 2022). 
Many lncRNAs also act as precursors of shorter regula-
tory RNAs, such as miRNAs or siRNAs, particularly those 
that actively participate in the RNAi pathway. In cotton 
(Gossypium hirsutum), 88 lncRNAs were precursors of 57 
miRNAs (Hamid et  al. 2020). These mechanisms modu-
late many developmental processes in plants, particularly 
those related to reproduction, like flowering. They are also 
key to plant responses to external stresses.

Stress tolerance responses in plants
The effects of different types of stresses on lncRNAs 
in the model plant A. thaliana have been extensively 
studied. For example, cold-induced long antisense intra-
genic RNA (COOLAIR), COLD ASSISTED INTRONIC 
NON-CODING RNA (COLDAIR), and COLD OF 
WINTER-INDUCED NON-CODING RNA FROM THE 
PROMOTER (COLDWRAP) found in Arabidopsis and 
other Brassicaceae plants are among some of the best-
characterized lncRNAs responsive to a stress condition, 
although they are not involved in stress tolerance. Ver-
nalization is a process in which prolonged exposure to 
cold stress ultimately promotes flowering. FLC encodes 
a TF that negatively regulates flowering, and the lncR-
NAs in question assist in downregulating FLC expres-
sion under cold stress. COOLAIR can repress FLC 
transcription by directly binding to the locus and modi-
fying chromatin or by forming an R-loop. COLDWRAP 
can form a chromatin loop with COLDAIR, which has 
a similar repressive function. COLDAIR also acts as a 
guide, as mentioned above. These RNAs can use several 
of the previously stated mechanisms of action to per-
form their roles (Crevillén et al. 2013; Heo & Sung 2011; 
Kim & Sung 2021; Xu et al. 2021)

Twelve lncRNAs were differentially expressed in the 
two A. thaliana ecotypes, Columbia (Col) and Lands-
berg erecta (Ler), lacking phosphate, which is a nutrient 
deficiency stress. One hypothesis is that certain lncRNAs 
are expressed in the genomes of Col and Ler in connec-
tion with known regulators of the phosphate-starvation 
response. For example, the high expression of phosphate 
transporters in Ler may cause the cell to take in more 
phosphate (Blein et  al. 2020). Phosphate deficiency in 
Arabidopsis can also cause lncRNAs to activate the RNA-
directed DNA methylation silencing pathway. This is a 
plant-specific regulatory system in which ncRNA mol-
ecules direct the methylation of specific DNA sequences 
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(De Oliveira Urquiaga et  al. 2021; Erdmann & Picard 
2020; Yong-Villalobos et al. 2015).

It is of utmost importance to study the mechanisms 
of stress responses in horticultural crops. Abiotic stress 
conditions restrict the locations where plants may be 
grown and can have a significant negative impact on 
global agricultural productivity. There is an unambigu-
ous relationship between escalating climate change and 
reduced agricultural productivity, making abiotic stress-
induced losses in crop yield inevitable in the coming 
years. With a rapidly increasing world population, several 
preventative and acclimatization strategies must be used 
in intervention plans to maintain agricultural sustainabil-
ity and prevent financial losses (Fawzy et al. 2020).

Studying lncRNAs in plants under stress can reveal 
unknown regulatory mechanisms involved in stress 
response and adaptation. Understanding these mecha-
nisms can help identify potential targets for genetic 
engineering to enhance stress tolerance in crops and 
improve their productivity under adverse environmen-
tal conditions. In addition, studying the expression pat-
terns of lncRNAs under stress can help identify potential 
biomarkers that can be used to monitor stress responses 
and predict plant performance under different stress 
conditions.

To date, several studies have attempted to examine the 
effects of abiotic stresses on lncRNAs in horticultural 
crops (Table 1).

Salt stress
A study on Asian white birch (Betula platyphylla) 
focused on a specific lncRNA, BplncSIR1, which was dif-
ferentially expressed under salt stress. Transgenic lines 
of this plant with overexpression and inactivation of Bpl-
ncSIR1 were generated to observe the phenotypic conse-
quences of altering the lncRNA being studied. There was 
a positive correlation between high expression levels of 
BplncSIR1 and accelerated plant growth, reduced water 
loss due to reduced stomatal aperture width, decreased 
reactive oxygen species (ROS) accumulation, as well as 
elevated activity of antioxidant enzymes under condi-
tions of increased salinity. The lncRNA was proposed 
to function by binding to and regulating the expres-
sion of the TF BpNAC2, which in turn activated genes 
such as ascorbate peroxidase 1 (APX1), peroxidase 52 
(PRX52), abscisic acid-deficient 2 (ABA2), and open sto-
mata 1 (OST1). Both ABA2 and OST1 are key genes in 
ABA-mediated stomatal control, while APX1 and PRX52 
code for ROS-scavenging enzymes (Fig. 4). Notably, the 
authors of this study confirmed that these functions of 
BplncSIR1 in Asian white birch were not due to the short 
peptide that it encodes (Jia et al. 2023).

On exposure to salt stress, 126 and 133 lncRNAs were 
found in the M-81E and Roma lines of sweet sorghum 
(Sorghum bicolor), respectively. These lncRNAs were 
found to potentially control transcription by competing 
with miRNAs to bind to target mRNAs. For instance, 
lncRNA13472 and sbi-MIR169b-p3 might compete to 
bind to SORBI_3010G218400. This gene codes for a 
V-type proton ATPase subunit that is associated with 
membrane transport. The ceRNA network in this plant 
may also affect other target genes that code for proton 
pumps, transporters, enzymes, and TFs (Sun et al. 2020).

Chickpea (Cicer arietinum) exposed to salt stress 
resulted in the differential expression of 3450 lncRNAs. 
Functional annotation suggested that lncRNAs control 
salt tolerance by changing the levels of several TFs, potas-
sium transporters, serine/threonine protein kinases, and 
aquaporins, as well as methylation pathways. TFs belong-
ing to families such as WRKY, NAC, and ERF play a 
prominent role in stress tolerance. A total of 80 distinct 
lncRNAs were predicted to interact with 136 different 
miRNAs as endogenous target mimics of miRNAs. The 
study suggests that these mimics change the expression 
of the penta-tricopeptide repeat gene family. This could 
strengthen the plant’s defense by inhibiting the stomatal 
opening. Simple sequence repeats, which are vital molec-
ular markers, were also reported in 614 lncRNAs. The 
authors of this paper suggested that leveraging lncRNA 
sequences was crucial to develop lncRNA-related mark-
ers for crop improvement (Kumar et al. 2021).

Heat stress
In Chinese cabbage (Brassica rapa), 1229 differentially 
expressed lncRNAs were identified as being responsive to 
heat stress, with the number expressed increasing gradu-
ally with the increase in heating time. Using functional 
enrichment analyses, lncRNAs were predicted to con-
trol the activity of heat-shock proteins (HSPs) and genes 
related to HSPs. For example, LNC_010992 was thought 
to regulate BraA07003689. High temperatures can cause 
protein misfolding, and HSPs play a pivotal role in the 
restoration of functional folding in heat stress-damaged 
proteins. Other genes whose expression was regulated in 
heat-treated Chinese cabbage were those related to the pro-
tein ubiquitin system, such as BraA01004433, which may 
assist in the degradation of denatured proteins. In addition, 
LNC_013535 regulated the expression of BraA09001034, a 
gene encoding dehydrin. Dehydrins are typically involved in 
protecting a plant against dehydration that may be caused 
by heat. LncRNAs were also co-expressed with three major 
latex protein-like genes. These genes positively responded 
to heat stress and are considered part of the ABA-mediated 
stress tolerance pathway. The phytohormone ABA has been 
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shown to alleviate the effects of heat stress (Chan 2012; 
Song et al. 2021). However, lncRNAs were also involved in 
the downregulation of PYR/PYL genes, despite their coding 
for ABA receptors. This indicates that gene expression is 
not a necessity for the ABA-mediated stress tolerance path-
way. Finally, most miRNAs in the constructed ceRNA net-
work were of the two types expressed in response to heat 
stress in other studies as well, although their exact function 
is unclear (Ahmed et al. 2019).

Poplar (P. qiongdaoensis) seedlings treated with heat 
stress showed 25 differentially expressed lncRNAs, 
one of which targeted six HSP genes. This lncRNA 
(lncHSP18.2) could cis-regulate the expression of the 
HSP18.2 gene (Xu et  al. 2020). Similarly, in another 
study where poplar (Populus × canadensis) trees under-
went heat stress conditions, lncRNAPc5 could tar-
get and regulate the expression of HSP82 and HSP83 
(Fig. 4) (Xu et al. 2020).

In pear (Pyrus spp.), HILinc1 induced by heat upregu-
lated the mRNA of its target gene, PbHILT1, by comple-
mentary base pairing. PbHILT1 then interacted with the 
transcriptional factor PbHSFA1b, which in turn enhanced 
the expression of an important heat shock response gene, 
PbMBF1c (Table 2). Plants overexpressing HILinc1 were 
therefore highly thermotolerant in the presence of heat 
stress. This study is also significant because its method-
ology used several biochemical techniques to confirm 

the proposed mechanisms of action, unlike other studies 
(Zhang et al. 2022).

Jujube (Ziziphus jujuba) seedlings exposed to high tem-
peratures for different periods expressed many unique 
differentially expressed lncRNAs at each time point, 
with only 40 lncRNAs being commonly expressed at all 
time points. Although the potential target genes of these 
lncRNAs were enriched in the pathways associated with 
response to heat stress, the study was unable to confirm 
any exact mechanisms (Hao et al. 2021).

In the leaves of cucumber (Cucumis sativus), 108 lncRNAs 
were differentially expressed following the application of heat 
stress. The lncRNAs TCONS_00031790, TCONS_00014332, 
TCONS_00014717, and TCONS_00005674 were all pre-
dicted to competitively bind to miR9748. This miRNA 
was also targeted by mRNAs such as Csa1M690240.1, 
Csa6M091930.1, and Csa7M405830.1, which are key players 
in the hormone signal transduction pathway. Csa1M690240.1 
and Csa7M405830.1 may specifically change the levels of 
indole-3-acetic acid (IAA) and ethylene in plants, both of 
which are synthesized less under heat stress conditions (He at 
al., 2020). miR9748 has also been shown to affect HSP90 lev-
els in plants (Cakir et al. 2016).

Cold stress
In the leaves and roots of M. truncatula, 983 and 1288 
lncRNAs, respectively, were responsive to cold stress. 

Table 1 Recent studies on lncRNAs in relation to plant stress (2019–2024)

Plant Species No. of Differentially 
Expressed LncRNAs

Stress Reference

1 Capsicum annuum (bell pepper) 1887 osmotic (Baruah et al. 2021)

2069 salt

2101 cold

2833 heat

2 Triticum aestivum (bread wheat) 1515 drought (Li et al. 2022)

3 Camellia sinensis (tea) 172 salt (Wan et al. 2020)

4 Brassica juncea (Indian mustard) 1614 heat and drought (Bhatia et al. 2020)

5 Manihot esculenta (cassava) 117 drought (Ding et al. 2019)

6 Melilotus albus (honey clover) 550 salt (Zong et al. 2021)

7 B. napus (rapeseed) Q2 genotype 126 drought (Tan et al. 2020)

B. napus (rapeseed) Qinyou 8 genotype 359

8 B. rapa (Chinese cabbage) 93 heat (Eom et al. 2021)

9 Oryza sativa (rice) ssp. japonica 97 heat (Zhang et al. 2021)

O. sativa (rice) ssp. indica 103

10 Panicum virgatum (switchgrass) 368 drought (Guan et al. 2024)

11 Olea europaea (olive) 2076 heavy metal (Al) (Wu et al. 2023)

12 Hordeum vulgare (barley) 195 heavy metal (Cd) (Zhou et al. 2023)

13 Populus trichocarpa (black cottonwood) 1183 salt (Ye et al. 2022)

14 Solanum pennellii (wild tomato) 137 salt (Li et al. 2022)

S. lycopersicum (cultivated tomato M82) 154
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Interestingly, lncRNA distribution in the leaves and roots 
depicted clear locational preferences, suggesting that 
these lncRNAs are tissue specific. While several putative 
targets of the cold-responsive lncRNAs were predicted, 
one of the most significant was a tandem array of CBF/
DREB1 genes located in a crucial cold tolerance region 
on chromosome 6. These genes code for transcriptional 
activators that are directed at CBF-targeted cold-regu-
lated genes, which may play a role in freezing tolerance 
(Zhao et al. 2020).

The winter wheat (T. aestivum) cultivar Dn1 is known 
for its resilience in low temperatures. An miRNA iso-
lated from this plant, tae-miR398, typically cleaves the 
mRNA produced by the CSD1 gene that codes for Cu/
Zn superoxide dismutase (SOD), reducing its synthe-
sis. SODs are ROS-scavenging enzymes; they eliminate 
ROS, which causes oxidative damage to plants. Under 
cold stress conditions, tae-miR398 in Dn1 was down-
regulated, and thus, CSD1 was upregulated. LncR9A, 
lncR117, and lncR616 were capable of interacting with 

Fig. 4 Studies that investigated the role of lncRNAs in enhancing plant tolerance to abiotic stress. A The lncRNA TCONS_00021861 acts by sponging 
miR528-3p and preventing its binding to target mRNA, leading to increased levels of the plant growth regulator IAA to counteract the effects 
of drought stress in rice (Oryza sativa). B LncRNAs induced in Brassica rapa, Populus qiongdaoensis, and Populus × canadensis under heat stress 
regulate genes involved in the production of heat-shock proteins, which can restore misfolded proteins. C LncRNAs in wheat (Triticum aestivum) 
under cold stress act as ceRNAs by competing with tae-miR398 to prevent the cleavage of target mRNA, leading to the synthesis of ROS-scavenging 
enzymes. D The lncRNA BplncSIR1 enhances salt stress tolerance in Asian white birch (Betula platyphylla). BplncSIR1 binds to the transcription factor 
BpNAC2, activating genes involved in ABA-mediated stomatal control and the production of ROS-scavenging enzymes

Table 2 Studies concerning specific lncRNAs that were predicted to enhance stress tolerance

Plant Species Name of LncRNA Stress Reference

1 Manihot esculenta (cassava) DIR (DROUGHT-INDUCED INTERGENIC lncRNA) drought (Dong et al. 2022)

2 M. esculenta (cassava) CRIR1 (cold-responsive intergenic lncRNA 1) cold (Li et al. 2022)

3 Gossypium hirsutum (cotton) LncRNA973 salt (Zhang et al. 2019)

4 Medicago truncatula (barrelclover) MtCIR2 cold (Zhao et al. 2023)

5 Pyrus spp. (pear) HILinc1 (heat-induced long intergenic non-coding RNA 1) heat (Xu et al. 2020)
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this miRNA. These lncRNAs might compete with tae-
miR398 to stop it from binding and cleaving target 
mRNA. This would increase SOD activity and protect 
the plant (Fig. 4) (Lu et al. 2020).

Grapevine (Vitis vinifera) subjected to cold stress had 
813 differentially expressed lncRNAs. Some targets of 
these lncRNAs were genes that coded for CBF4 TF, late 
embryogenesis abundant (LEA) protein Lea14-A, and 
WRKY TF 41 (Wang et al. 2019). CBF, as mentioned ear-
lier, as well as LEA and WRKY proteins, are vital in the 
freezing tolerance response of plants (Sasaki et al. 2014; 
Xiao et  al. 2008; Zou et  al. 2010). LncRNA expression 
may even be induced in the fruits of plants under stress 
conditions. For instance, 380 lncRNAs were differentially 
expressed in chilled bell pepper (Capsicum annuum) 
fruits. A ceRNA network that targeted the synthesis of 
key enzymes, including serine/threonine protein kinases 
and β-galactosidases, contained 81 of these lncRNAs 
(Zuo et al. 2018).

Drought stress
In a comprehensive study where rice (O. sativa) was placed 
in a water deficit condition, 98 lncRNAs were differen-
tially expressed. In the constructed ceRNA network, the 
TCONS_00021861/miR528-3p/YUCCA7 triplet had the 
most significant positive correlation. The YUCCA  gene 
family is responsible for IAA synthesis and thus subserves 
plant growth regulation. Drought-stressed rice showed 
upregulated miR528-3p expression and downregulated 
lncRNA TCONS_00021861 and YUCCA7 expression. 
The overexpression of TCONS_00021861 implies that 
lncRNA positively regulated YUCCA7 as IAA levels signif-
icantly increased. The opposite occurred with miR528-3p 
overexpression, implying that miRNA negatively regu-
lated YUCCA7. Thus, TCONS_00021861 could increase 
IAA levels in the plant by sponging miR528-3p and pre-
venting its binding to YUCCA7 (Fig.  4). As expected, 
the TCONS_00021861 overexpression group showed 
increased weight and length in the plant leaves and roots 
due to the amplified expression of IAA.

In addition, abiotic stress tends to result in ROS accu-
mulation within the plant. In rice TCONS_00021861 
overexpression lines, no increase in  H2O2 and  O2 con-
tents was observed under drought stress. This con-
trasted with miR528-3p overexpression lines, where 
ROS content was significantly increased. Interestingly, 
the authors of this study also examined the ultrastruc-
ture of mesophyll cells of the plant. Compared with the 
control group, chloroplasts were damaged and granal 
stacking was disrupted, among other signs of damage to 
organelles in drought-stressed leaves. However, in the 
TCONS_00021861 overexpression group, chloroplast 
damage was minimal and granal stacking was unaffected. 

This overall mitigation of stress-induced plant dam-
age may be a result of elevated IAA signaling caused by 
TCONS_00021861 lncRNA (Chen et al. 2021).

In beet (Beta vulgaris), 386 differentially expressed 
lncRNAs were induced under drought stress, with 
TCONS_00055787 being upregulated by more than 
6000-fold. Flavonoids are secondary metabolites 
known to exert a protective effect on plants affected by 
drought stress. The lncRNAs TCONS_00009457 and 
TCONS_00088109 targeted the genes BVRB_1g007170 
and BVRB_1g016280, respectively, both of which 
occur in the flavonoid biosynthetic pathway of 
plants. In addition, the lncRNAs TCONS_00055970 
and TCONS_00056083 were predicted to target the 
BVRB_6g151690 and BVRB_6g152260 genes, which 
code for chalcone synthase, an enzyme necessary in fla-
vonoid synthesis. Other lncRNAs targeted genes that 
encoded fructose-1,6-bisphosphatase and malate dehy-
drogenase, which are key players in photosynthetic pro-
cesses. These lncRNAs might be involved in altering 
the photosynthetic processes that occur in beet under 
drought conditions (Zou et al. 2023).

Another study found 1395 drought-specific lncR-
NAs in tea (Camellia sinensis), many of which were 
predicted to act as target mimics of miRNAs. Analysis 
results showed that the initial target genes of these miR-
NAs were involved in pathways such as the citrate cycle, 
purine and thiamine metabolism, and the biosynthesis 
of unsaturated fatty acids. Exactly how lncRNAs per-
form their hypothesized function was not determined 
(Baruah et al. 2021).

Many of the proposed mechanisms of action discussed 
in the studies above have not been substantiated with 
evidence from biochemical experimentation. Computa-
tional prediction tools are an essential first step in char-
acterizing newly reported lncRNAs. However, these 
molecular functions must be experimentally proven, a 
promising avenue for future research.

All these studies discuss the basal responses of plants 
to different stresses. However, in severe stress conditions, 
this response may not be sufficient to defend a plant 
against negative consequences.

Priming‑induced acquired stress tolerance
Priming-induced acquired stress tolerance is a phenom-
enon in which exposure to mild stress can help a plant 
cope with any ensuing stresses better, compared with a 
previously unexposed plant (Nair et  al. 2022). Priming 
can lead to a more rapid and amplified stress tolerance 
response because of the plant “remembering” the previ-
ous stress exposure. The priming stimulus and the sub-
sequent stress the plant is exposed to may be of the same 
type (cis-priming) or of different types (trans-priming 
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or cross-stress tolerance) (Johnson & Puthur 2021). 
An example of the former is shown in a study in which 
chickpea (C. arietinum cv. Anuradha) and lentil (Lens 
culinaris cv. Ranjan) seeds primed with NaCl displayed 
improved tissue tolerance under salt stress conditions 
(Khemka et  al. 2016). Contrarily, cold stress priming of 
Bermuda grass (Cynodon dactylon) led to increased toler-
ance to salt stress and is an example of the latter (Noor 
et al. 2023). Priming-induced plant stress memory ranges 
from short-term (a few hours) to long-term (several 
weeks) (Bäurle and Trindade 2020). Sometimes, prim-
ing-induced stress memory is passed down to plant off-
spring because of direct exposure of the parent plant to 
a stressor, known as “intergenerational stress memory”. 
Conversely, “transgenerational stress memory” is dem-
onstrated when the effects of ancestor stressor expo-
sure were present in the offspring generation even if 
the parent generation was not exposed to the stressor. 
For instance, stress memory of two parental generations 
of wheat (T. aestivum) enhanced the growth and sur-
vival of offspring in drought stress conditions (Kambona 
et  al. 2023). A study that investigated short-term stress 
memory in rice (O. sativa) under drought stress found 
that memory-related expression patterns were observed 
in 6.33% of identified lncRNAs. One such lncRNA, 
TCONS_00028567, was predicted to be a precursor of 
osa-MIR1428e and may act as a post-transcriptional 
regulator of serine/threonine protein kinase 10 gene prod-
ucts, which are key in the ABA signaling pathway that 
plays a role in drought stress tolerance (Li et al. 2019).

Link between lncRNAs and exogenous chemical 
application in plants
The exogenous application of certain chemicals that may 
mimic conditions of abiotic stress to plants is commonly 
used as a treatment to augment plant defense responses 
against abiotic stress. This type of chemical priming is an 
example of trans-priming mentioned above. For exam-
ple, priming Chinese crab apple (Malus hupehensis) with 
ABA helped to diminish the effects of cadmium (Cd) tox-
icity (Deng et  al. 2022). Similarly, exogenous melatonin 
applied to tomato (Solanum lycopersicum) under salt 
stress increased its salt tolerance by several mechanisms, 
including the regulation of enzymes involved in proline 
and carbohydrate metabolism in seedlings (Siddiqui et al. 
2019). Exogenous spermidine alleviated the detrimen-
tal effects of heat stress in O. sativa ssp. japonica varie-
ties Wuyunjing 24 and Ningjing 3 (Tang et al. 2018), and 
exogenous menadione sodium bisulfite strengthened the 
response of bread wheat (T. aestivum) against alkaline 
stress (Jiménez-Arias et al. 2019).

Exogenous chemical application can specifically regu-
late gene expression to promote stress tolerance, as was 

observed in tomato (S. lycopersicum) plants facing low 
light stress. Exogenous GR24 application significantly 
upregulated the expression of PSII genes, such as psbA 
and psaB, helping to maintain photosynthetic efficiency 
(Lu et  al. 2019). Likewise, exogenous SA application 
improved the defense of alfalfa (M. sativa) against freez-
ing stress by inducing the expression of specific genes 
that led to enhanced antioxidant enzyme production 
(Wang et al. 2023).

Both lncRNAs and exogenous chemical applications 
may play a role in plant stress response; therefore, the 
link between them is intriguing. Gene expression regu-
lated by lncRNA-mediated pathways is a possible mecha-
nism by which exogenous chemical application leads to 
stress tolerance.

Rice (O. sativa) plants exposed to significant Cd con-
centrations exhibited signs of heavy metal toxicity and 
were treated with melatonin. Melatonin is known to 
alleviate these adverse effects, especially by counteract-
ing oxidative stress and altering Cd uptake and seques-
tration. About 125 lncRNAs were differentially expressed 
in plants in this experiment. A notably larger number of 
lncRNAs were expressed in plants exposed to both Cd 
and melatonin than in plants treated with either Cd or 
melatonin alone. These lncRNAs were involved in modi-
fications of the plant cell wall by regulating the expres-
sion of genes that increased pectin content and decreased 
cellulose content, allowing Cd to be immobilized within 
the cell wall itself. In addition, lncRNAs play a role in pre-
serving the integrity of chloroplasts by targeting genes 
associated with the metabolism of natural antioxidants 
(Qiu et al. 2024) (Fig. 5).

In poplar (Populus × euramericana) leaves treated with 
SA, 49 lncRNAs related to the stress response were differ-
entially expressed. The target genes of these lncRNAs were 
mainly involved in MAPK signaling (important for regulat-
ing plant processes), secondary metabolism, and hormone 
signal transduction. One such gene, cytokinin dehydroge-
nase 1 (target of lncRNA MSTRG.27124.2), was thought 
to play a role in drought stress tolerance. Another gene, 
fructose-diphosphate aldolase 1, was targeted by seven lncR-
NAs (MSTRG.18764.2, MSTRG.24214.3, MSTRG.27124.2, 
MSTRG.3816.2, MSTRG.3931.1, MSTRG.5940.1, and MSTRG. 
929.1). Fructose-diphosphate aldolase activity was found 
to impact cold and salt stress tolerance (Zhang et al. 2023). 
Moreover, 412 lncRNAs were differentially expressed in 
strawberry (Fragaria × ananassa) as a response to exog-
enous ABA application, and these lncRNAs were predicted 
to be involved in pathways by which plants respond to heat, 
drought, and osmotic stresses (Chen et al. 2022) (Table 2).

Another study investigated how lncRNAs in cassava 
(Manihot esculenta) were affected by treatment with 
polyethylene glycol (PEG) and melatonin, which induced 
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drought stress and tolerance to drought stress, respec-
tively. Differentially expressed lncRNAs included 75 under 
PEG treatment, 68 under melatonin treatment, and 42 
under both treatments. In addition, 28 lncRNA-mRNA 
pairs involved in the regulation of neighboring genes were 
identified. These lncRNAs were involved in light signaling, 
fatty acid synthesis and elongation, secondary metabolism, 
and tetrapyrrole synthesis (Ding et al. 2019) (Table 3).

Some researchers have studied the activity of specific 
lncRNAs as a result of chemical treatments. A study 
showed that when Arabidopsis was treated with ABA, 
the amount of the lncRNA TE-lincRNA11195 signifi-
cantly increased. TE-lincRNA11195 expression also 
varied considerably under salt, heat, cold, and drought 
stresses, suggesting that it plays a role in abiotic stress 
response (Wang et  al. 2017). A similar study showed 

that the lncRNA DRIR was strongly induced by drought 
and salt stresses in Arabidopsis treated with ABA. DRIR 
appeared to play a role in regulating the expression 
of genes involved in drought and salt stress tolerance, 
such as P5CS1 and RD29A (Qin et al. 2017) (Table 3).

The marneral cluster of Arabidopsis contains the 
AT5G00580 gene, which is transcribed into the MARS 
lncRNA. MARS is most strongly induced in response to 
heat stress and exogenous ABA application. The expres-
sion of other genes (such as those that influence seed 
germination) located in the marneral cluster is regulated 
by the formation of a chromatin loop between the MRN1 
locus and a distal enhancer element. MARS overaccumu-
lation leads to chromatin remodeling because of its inter-
actions with LIKE HETEROCHROMATIN PROTEIN 1, 
which facilitates the process (Roulé et al. 2022) (Table 4).

Fig. 5 Melatonin enhances cadmium stress tolerance in rice (O. sativa) by lncRNA-mediated pathways. 125 lncRNAs were differentially expressed 
in chemically treated plants. These RNAs regulate genes that are involved in cell wall modifications to increase cadmium sequestration, maintain 
photosynthesis by protecting chloroplasts, and reduce oxidative damage by synthesizing antioxidants

Table 3 Studies on the effect of chemical treatments on lncRNAs

Plant Species Chemical Applied No. of Differentially 
Expressed
LncRNAs

Target Genes Stress Tolerance 
Enhanced by 
Treatment

Reference

Populus × euramericana (poplar) salicylic acid 49 CKX1
FBA1

drought (Zhang et al. 2023)

cold

salt

Fragaria × ananassa (strawberry) ABA 412 - heat (Chen et al. 2022)

drought

osmotic

Manihot esculenta (cassava) melatonin 68 - drought (Ding et al. 2019)
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However, there are studies that provide evidence con-
trary to this link. For example, a study of drought stress in 
cassava (M. esculenta) found that the major lncRNA DIR, 
predicted to enhance the drought tolerance response, 
was not significantly affected by ABA or jasmonic acid 
treatment (Dong et al. 2022).

There is limited research on the effects of exogenous 
applications of chemicals on lncRNAs in plants, espe-
cially those with horticultural value, and further investi-
gation is required.

Limitations
According to the selected effects theory of function, the 
function of a trait is the function for which the trait was 
naturally selected; thus, a true function should have an evo-
lutionary context (Neander 1991). Because most lncRNAs 
tend to show low sequence conservation, proving function-
ality is a difficult task (Sang et al. 2021). Most of the recent 
studies discussed in this paper proposed that an increased 
expression of lncRNAs under abiotic stress can indicate 
their roles in stress tolerance. In these experiments, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were performed 
to determine the biological processes, cellular locations, 
and molecular functions impacted by the stress condi-
tion and the pathways involving lncRNAs. Despite being 
a good starting point to identify novel lncRNAs, studies of 
this nature cannot definitively prove that the relationship 
between lncRNAs and abiotic stress is not simply corre-
lational. Other studies were able to identify how lncRNAs 
were involved in certain molecular mechanisms, but these 
were still causal role functions (Graur et al. 2013).

Some studies involved transgenic lines of plants that were 
edited with CRISPR to knock out or overexpress certain 
lncRNAs. This allowed for the observation of phenotype 
changes, which is more conclusive proof of lncRNA func-
tionality (Wierzbicki et al. 2021). Therefore, more research 
of this nature is required in the future. A limited number of 
studied plant lncRNAs have irrefutable biological functions 
with well-understood molecular mechanisms. As research 

in this field continues, attempts must be made to establish 
definitive functions of other lncRNAs as well. An impor-
tant step is designing biochemical experiments that do not 
extensively depend on computational tools to help gather 
evidence that could corroborate the predictions of many 
published studies. In terms of chemically induced abi-
otic stress tolerance, the small body of literature is unable 
to identify if the effect of the priming stimulus is lncRNA 
mediated or if stress tolerance is a result of other mecha-
nisms. Nevertheless, the increased expression of lncRNAs 
in such conditions is compelling and worth researching.

Conclusions
Growing evidence over the past decade suggests that 
the bulk of the eukaryotic genome is transcribed, a phe-
nomenon known as “pervasive transcription”, resulting 
in increasing research on the possible biological roles and 
functional mechanisms of ncRNAs, including lncRNAs. 
However, it is often unclear whether a lncRNA in a spe-
cific condition exerts a function or if it is just a byproduct 
of other noisy transcriptional processes (Jensen et al. 2013). 
The overall findings of this review suggest that lncRNAs 
coordinate gene expression in response to various environ-
mental stimuli that have negative effects on plants. These 
stimuli include stresses such as heat, drought, cold, and salt. 
While several mechanisms of action of lncRNAs have been 
identified thus far, most studies focus on the identification 
of lncRNAs rather than their functional characterization. 
The latter is often only predicted computationally, and it 
remains a difficult endeavor to prove such mechanisms by 
biochemical or mechanistic studies. Thus, further research 
is required (Manavella et al. 2023). There is mounting evi-
dence suggesting that the abiotic stresses discussed in this 
review will become more prevalent in the coming years as 
climate change worsens. Understanding the many regu-
latory mechanisms, including those involving lncRNAs, 
which control and promote adaptive responses to stress 
in different plant species is important for finding ways to 
maintain plant productivity and produce horticultural crop 
species with reduced susceptibility to stress.

Table 4 Studies on specific lncRNAs in Arabidopsis induced by chemical treatment

Plant Species Chemical Applied Induced LncRNA Target Genes Stress Tolerance 
Enhanced by Treatment

Reference

Arabidopsis thaliana ABA TE-lincRNA11195 - drought (Wang et al. 2017)

cold

salt

DRIR P5CS1 RD29A heat (Qin et al. 2017)

drought

osmotic

MARS MRN1 drought (Roulé et al. 2022)
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